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The stability of an equilibrium system of two drops suspended from circular holes in
a horizontal plate is examined. The drop surfaces are the disconnected axisymmetric
surfaces pinned to the edges of the holes. The holes lie in the same horizontal
plane and the two drops are connected by a liquid layer that lies above the
plate. The total liquid volume is constant. For identical pendant drops pinned to
holes of equal radii, axisymmetric perturbations are always the most dangerous.
The stability region for two identical drops differs considerably from that for a
solitary pendant drop. A bifurcation analysis shows that the loss of stability leads
to a continuous transition from a critical system of identical drops to a stable
system of axisymmetric non-identical drops. With increasing total protruded liquid
volume this system of non-identical drops reaches its own collective stability limit
(to axisymmetric perturbations) which gives rise to dripping or streaming from the
holes. Critical volumes and heights for non-identical drops have been calculated as
functions of the dimensionless hole radius (associated with the Bond number). For
unequal hole radii, there are three intervals of the larger dimensionless hole radius,
R0

1 , with qualitatively different bifurcation patterns which in turn can depend on
the smaller dimensionless hole radius, R0

2 . Loss of stability may occur when the
drop suspended from the larger hole reaches its stability limit (to non-axisymmetric
perturbations) as a solitary drop or when the system reaches the collective stability
limit (to axisymmetric perturbations). Typical situations are illustrated for selected
values of R0

1 , and then the basic characteristics of the stability for a dense set of R0
1

are presented.

1. Introduction
We consider an incompressible liquid region overlying a flat horizontal plate. Two

pendant drops are pinned to the edges of two circular holes in the plate. The holes
have radii r0

1 and r0
2 and are at the same hydrostatic level. The drops are connected

by the liquid region. The total volume of liquid is constant. The liquid’s free surface
is assumed to consist only of the two axisymmetric drop surfaces, Γ1 and Γ2, and is,
thus, a disconnected surface. The study of the stability of this system is a first and
important step for the analysis of the stability of the system with a large number of
holes with radii r0

1 , . . . , r
0
m and pendant drop surfaces Γ1, . . . , Γm (m > 2). This is a

typical geometry associated with, for example, devices such as perforated diaphragms
and screens that underlie a liquid reservoir. These types of devices occur widely
in the chemical, food and power industries. They are also of importance for space
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applications such as propellant management systems created for localization and
confinement of liquid at a designated location within a tank.

The stability of the systems with large numbers of holes may be roughly estimated
from the results obtained in this study as follows: if the system of two drops is
unstable, then any system that includes these two drops is also unstable. In addition
to addressing the question of stability, we note that the accurate numerical data we
obtain for critical parameter values for two drops suspended from equal radii holes
provides a basis for an alternative method for surface tension measurement. Our
results can also be used to guide design of ‘electroosmotic droplet switches’. Vogel,
Ehrhard & Steen (2005) discuss switches that take advantage of the existence of
bi-stable droplet configurations for a given combined volume of two separate drops
attached to equal radii holes when gravity is neglected. Our results could be used
for switches with drops attached to unequal radii holes in weightlessness or to equal
and unequal radii holes under axial gravity conditions (i.e. when the switch is gravity
sensitive).

If an incompressible liquid volume is bounded by a disconnected free surface, it
follows that any deformation of the liquid’s surface must conserve the total liquid
volume. For the case under consideration, the fixed volume condition takes the
form

δv1 + δv2 = 0, (1a)

or, equivalently, ∫
Γ1

N1 dΓ +

∫
Γ2

N2 dΓ =0. (1b)

Here, δv1 and δv2 correspond to variations of the drop volumes v1 and v2, and Ni

is the normal component of perturbations to the surface Γi (i = 1, 2). However, the
constant volume constraint (1a) does not require that each drop satisfy a separate
volume conservation condition of the form

δv1 = δv2 = 0, (2a)

or ∫
Γ1

N1 dΓ =

∫
Γ2

N2 dΓ =0. (2b)

Isochoric perturbations that satisfy (2b) are precisely the disturbances that determine
the stability of a solitary drop under a constant volume constraint (figure 1a). For
the disconnected surface formed by the two connected drops considered here, the
perturbation of a drop surface need not conserve the volume of that drop, but must
be associated with a complementary non-isochoric perturbation of the other drop’s
surface such that the total liquid volume is conserved (see figure 1b). Consequently,
the set of admissible perturbations on each drop surface Γ1 and Γ2 that must satisfy
(1b) is larger than the set of isochoric perturbations that satisfy (2b). This means that
collectively, two pendant drops may be more unstable than either of the two drops
considered separately and with a constant volume constraint. This is the distinctive
feature of systems with disconnected free surfaces (see, for example, Alexander &
Slobozhanin 2004).

1.1. The stability of a solitary pendant drop to isochoric perturbations

The stability problem for two connected drops suspended from the edges of circular
holes in a horizontal plate is closely related to the classical problem of solitary pendant
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Figure 1. Equilibrium (thin solid lines) and perturbed (dashed lines) surfaces of pendant
drops pinned to edges of holes in a horizontal plate (thick straight lines). (a) The perturbation
is isochoric for a single drop. (b) The perturbation may be non-isochoric on each of the two
connected drops.

drop stability. For solitary drops there are two cases – stability to constant-volume
perturbations and stability to constant-pressure perturbations. Thompson (1979)
and Michael (1981) refer to these as internal and external stability, respectively.
For situations where the drop volume is constant, the admissible perturbations are
isochoric. Previous results for drop stability to isochoric perturbations are summarized
below.

In the absence of gravity, the equilibrium free surface of any axisymmetric drop
pinned to the edges of circular holes is a spherical segment, has a minimal area and,
thus, is always stable to small perturbations for which the surface remains pinned.

For gravity oriented perpendicular to a flat plate, the axisymmetric equilibrium
shapes of pendant drop free surfaces pinned to edges in the plate have been thoroughly
investigated both numerically and analytically (see Bashforth & Adams 1883; Freud
& Harkins 1929; Concus 1968; Hida & Nakanishi 1970; Padday 1971; Boucher
& Evans 1975; Vaček 1975; Hartland & Hartley 1976; Chesters 1977; Concus &
Finn 1979; Finn 1986; Myshkis et al. 1987 and references therein). With

√
σ/ρg

chosen as a characteristic length (ρ is the liquid density, g is the acceleration due to
gravity, and σ is the surface tension) the equilibrium equations (described in § 2.1)
can be normalized by a similarity transformation of cylindrical coordinates (r, θ, z) to
non-dimensional variables (R, θ, Z). For a given dimensionless radius of the hole, R0,
there is a one-parameter family of axisymmetric equilibrium surfaces. The determining



322 L. A. Slobozhanin and J. I. D. Alexander

3

2

1

0 1 2 3 4

Z

R

5

3.5

Q = 2.8

Q = 0.4

2.4
2.0

1.6

1.2

0.8

BC
O

w

A

t

Figure 2. Profiles of single pendant drops critical to isochoric perturbations (thick solid
lines). They are bounded by the dashed line OtAB . For R0 < 3.219 (the terminal point of
a critical profile lies on OtA), a drop loses its stability to axisymmetric perturbations. For
3.219 < R0 < 3.8317 (the terminal point belongs to AB) loss of stability occurs to non-
axisymmetric perturbations (after Slobozhanin & Tyuptsov 1974; Myshkis et al. 1987). Drops
with profiles bounded by the thin solid line OwC are critical to fixed pressure perturbations
(after Slobozhanin & Alexander 2003). Lines OtAB and OwC represent dependency of
dimensionless height, H ∗, on dimensionless hole radius, R0, for solitary drops critical to
isochoric perturbations and to fixed pressure perturbations, respectively.

parameter is twice the dimensionless mean curvature, Q, of a drop surface at the point
of intersection with the Z-axis of symmetry. Segments of a set of equilibrium lines
corresponding to axial sections θ = const of equilibrium free surfaces with coincident
initial points (belonging to the Z-axis) are shown in figure 2. The gravity vector is
downward-directed, and the liquid lies above the equilibrium surface. Only lines with
Q > 0 are depicted. When Q changes sign, the equilibrium line undergoes a mirror
reflection with respect to the R-axis (which coincides with the line Q =0). Lines with
Q < 0 correspond to sessile bubbles.

The internal stability of a solitary drop hanging from the edge of a hole was first
analysed by Lonstein (1906a–c). He reasoned that a drop loses its stability when
the drop volume takes a locally maximum value for a given radius of the hole, R0.
Freud & Harkins (1929) and later other authors (Padday & Pitt 1973; Boucher &
Evans 1975; Pitts 1976; Vaček, Nekovář & Grigar 1977) used the Lonstein method
to calculate stable drop shapes. A rigorous proof of the truth of the Lonstein method
is due to Pitts (1974).

The Lonstein method holds only for the analysis of the stability to axisymmetric
isochoric perturbations. However, they are not necessarily the most dangerous.
Maxwell (1876) was the first to establish this. To explain the results of Duprez’
experiment (1851, 1854), he analysed the stability of a horizontal free surface resting



Stability of two connected drops suspended from circular holes 323

on the edges of a hole and separating the liquid above from a gas below (a pendant
‘drop’ of a zero volume with equilibrium line Q =0). He found that non-axisymmetric
perturbations Z = εJ1(R) cos θ are the most dangerous (ε is a small amplitude), and
that the critical radius R0 is 3.8317 (corresponding to the first positive zero of
the Bessel function J1(x)). The stability of a drop with a curved free surface with
respect to arbitrary perturbations (both axisymmetric and non-axisymmetric) was
examined by Slobozhanin & Tyuptsov (1974, 1975) (see also Babskii et al. 1976;
Myshkis et al. 1987, § § 3.4.4, 3.9.5, 3.10). They have shown that a solitary drop loses
stability to axisymmetric isochoric perturbations only for R0 < 3.219. However, if
3.219 < R0 < 3.8317, non-axisymmetric perturbations N = εZ′(S) cos θ become more
dangerous (S is the dimensionless arclength of an equilibrium line), and no stable
state exists for R0 > 3.8317. On the interval 3.219 <R0 < 3.8317 the profiles (axial
sections) of critical drops correspond to 0 < Q < 1.570 and have horizontal tangents
at their endpoints S = S∗

1 . Segments of equilibrium lines depicted in figure 2 represent
profiles of drops critical to arbitrary perturbations. The dependence of their height
H ∗ = Z(S∗

1 ; Q) and protruded volume

V ∗ = π

∫ S∗
1

0

R2 (S; Q) Z′ (S; Q) dS

on R0 has been constructed (see figures 2 and 3). It should be emphasized that
non-axisymmetric perturbations are always isochoric (in contrast to axisymmetric
perturbations that may be either isochoric or non-isochoric).

Michael & Williams (1976) independently drew the same conclusion, i.e. that
non-axisymmetric perturbations are critical for 3.219 <R0 < 3.8317. A discussion of
solitary pendant drop stability is available in a review by Michael (1981). Many of
the mathematical aspects of pendant drop stability were studied by Wente (1980,
1989).

Bifurcation patterns described by Myshkis et al. (1987, § 4.4.2) lead to the conclusion
that loss of stability of an axisymmetric pendant drop, either to axisymmetric isochoric
perturbations or to non-axisymmetric perturbations, results in the liquid dripping or
streaming out from the hole.

The results of previous investigations of pendant drop stability to isochoric
perturbations have typically been presented graphically. Figures collected in tables
(Freud & Harkins 1929; Boucher & Evans 1975; Myshkis et al. 1987) are not
sufficiently detailed and accurate for practical use. In addition, the characteristics of
critical drops are given as functions of Q, a value that cannot be predetermined and
is difficult to measure. However, the detailed numerical data are of immediate interest
to the experimentalist, and in the context of the present study, are necessary for at
least two reasons: (a) to have the opportunity to compare accurately the stability of
a solitary drop and two connected drops hanging from holes of equal radii; and (b)
for the case of two drops hanging from holes with unequal radii, to calculate the
parameters of the critical system determined by the drop hanging from the larger
hole and critical to non-axisymmetric perturbations (see § 5). We have performed
accurate calculations with an integration step in the dimensionless arclength S equal
to 10−6 and a dimensionless radius R0 determined to within 10−5. These calculations
yielded data for the critical parameters H ∗, V ∗, Q∗, Q∗ − H ∗, and the slope angle
β∗ = β(S∗

1 ; Q∗) at the endpoints of critical profiles. These parameters were determined
for a dense set of R0 values with an increment 0.05 and can be requested directly
from the authors.
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1.2. Relation between the stability of a solitary drop to fixed-pressure perturbations
and the stability of connected drops to fixed-volume perturbations

Alexander & Slobozhanin (2004) reviewed methods suggested by Gillette & Dyson
(1974), Orel (1974), Maddocks (1987) and Lowry & Steen (1995) to examine the
stability of systems with multiple free surfaces. Orel (1974) must be given credit for
first recognizing the importance of fixed-pressure stability of single surface systems
to the stability of fixed liquid volumes with coupled free surfaces. Slobozhanin &
Alexander (2003) have shown that:

(i) A system of m, m � 2, connected drops is stable to perturbations which conserve
the total liquid volume (see condition (1a) for the case m =2) if, when considered
separately as a solitary pendant drop, each of the drops that comprise the system is
stable to constant-pressure perturbations.

(ii) The system is unstable if, when considered separately as a solitary pendant drop,
at least two of the drops that comprise the system are unstable to constant-pressure
perturbations.

In this connection the stability conditions under fixed-pressure perturbations (or
external stability) for a solitary drop hanging from the edges of a hole are important.

Under zero-gravity, a free surface is the surface of a spherical segment. A solitary
spherical segment is stable to fixed-pressure perturbations if it is less than a
hemisphere, and is unstable if it is greater than a hemisphere (Boys 1902; Searle
1934). (This is in contrast to fixed-volume perturbations for which any spherical
segment pinned to edges is stable.)

For non-zero gravity, Pitts (1974) has calculated the critical volume, V ∗, of a
solitary pendant drop under constant-pressure perturbations for R0 = 1 and 2, and
Michael & Williams (1976) have constructed a set of curves that permit calculation
of the critical height H ∗ for selected values of R0 on the interval 0.6 � R0 � 2.0.
A solitary ‘drop’ with a horizontal free surface is stable if R0 < 2.4048 (this is the
value of the first zero of the Bessel function J0(x)). This condition was obtained by
Pitts (1974) and Michael & Williams (1976). For R0 > 2.4048, there is no solitary drop
stable to fixed-pressure perturbations. Under a fixed pressure constraint, axisymmetric
perturbations are always the most dangerous. The comprehensive calculations related
to this kind of stability were performed by Slobozhanin & Alexander (2003), and
the functions H ∗(R0) and V ∗(R0) were constructed on the interval 0<R0 � 2.4048
(see figures 2 and 3). Comparison of the stability regions for a solitary drop under
perturbations constrained by either fixed pressure or fixed volume shows that these
regions differ considerably in extent. For example, the maximum value of the critical
height, H ∗, is 2.638 for fixed-volume perturbations (this value corresponds to a solitary
drop with Q =2.275 that is suspended from a circular hole of radius R0 = 1.675),
and is 0.897(Q = 1.454, R0 = 1.499) for fixed-pressure perturbations (figure 2). As
indicated in figure 3, the maximum dimensionless protruded liquid volume that
can be retained under constant-volume perturbations is 18.964 (the critical solitary
drop corresponding to Q =1.570 and R0 = 3.219). In contrast, for fixed-pressure
perturbations, this volume is 4.379 (Q = 0.900 and R0 = 1.995). Detailed numerical
information about parameters of drops critical to fixed-pressure perturbations can
also be requested from the authors. The presented values have high accuracy (as in
the case of solitary drops critical to isochoric perturbations).

According to the conclusions (i) and (ii), stated above, a system consisting of two
pendant drops is stable to perturbations that conserve total volume if the profiles
of both downwardly protruding drops belong to the region OwCO in figure 2. The
system is unstable if the terminal points of both profiles lie outside this region (as a
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Figure 3. Dimensionless volume as a function of R0 for a single pendant drop critical to
isochoric perturbations (dashed line; after Slobozhanin & Tyuptsov 1975 and Myshkis et al.
1987) and to fixed pressure perturbations (solid line; Slobozhanin & Alexander 2003).

clear example, if dimensionless holes radii R0
1 > 2.4048 and R0

2 > 2.4048). In particular,
if R0

1 = R0
2 and the profiles of the two drops are identical, the system stability is the

same as the stability of a solitary drop suspended from the edges of a horizontal
circular hole and subject to constant-pressure perturbations.

Note, however, that even for equal holes (R0
1 = R0

2), two drops are not necessarily
identical. The general case that remains unsolved is the case when one drop (when
considered as a solitary drop) is stable to fixed-pressure perturbations while the other
is unstable to these perturbations but is stable to isochoric perturbations, (2b). In other
words, this is the case when the terminal point of one equilibrium profile belongs
to the region OwCO , while the terminal point of other profile lies in the region
OtABCwO (figure 2). Only these systems may be critical for connected non-identical
drops and non-isochoric perturbations, (1b).

In the following, for clarity, we refer to IC-perturbations as the perturbations that
conserve the volume of each of two connected drops independently (i.e. they satisfy the
condition (2b)). On the other hand, we refer to NI-perturbations as the perturbations
that do not conserve the volume of either of the two drops independently (i.e. they
satisfy the condition (1b), but do not satisfy the condition (2b)). A solitary drop that
is stable (unstable) to isochoric perturbations is IC-stable (IC-unstable). A solitary
drop that is stable (unstable) to constant-pressure perturbations is CP-stable (CP-
unstable). It is evident that a system of two connected drops must be unstable (to
IC-perturbations) if at least one of the drops is IC-unstable. However, this does not
always determine the stability limit of a system of two drops. As discussed earlier, in
some cases, the range of stable two-drop configurations may be smaller than would be
predicted by a consideration of solitary drop stability to IC-perturbations because the



326 L. A. Slobozhanin and J. I. D. Alexander

drops may lose stability to NI-perturbations. A system of two connected drops that
is stable (unstable) to NI-perturbations is NI-stable (NI-unstable). Consistent with
this nomenclature we refer to critical states as IC-critical, CP-critical or NI-critical.

The organization of this paper is as follows. In § 2, we outline previous approaches
to the study of the equilibrium and stability conditions of two connected pendant
axisymmetric drops. The case of zero-gravity (§ 3) is relatively simple, and the stability
conditions for a weightless liquid bounded by two spherical segments in contact with
the edges of equal radii holes are known. In this paper, we examine the effect of
unequal hole radii. For two pendant drops under non-zero gravity, we first focus
attention on equal radii holes (§ 4). Our results are illustrated in detail using the
example of R0

1 =R0
2 = 1. Then for the case of arbitrary R0

1 = R0
2 values, the parameters

determining the critical states are presented. For systems with unequal radii holes,
R0

1 > R0
2 , we proceed from the simplest case when a liquid is bounded from below by

horizontal free surfaces pinned to edges of two holes in a horizontal plate. We then
deal with curved free surfaces, and present results for three intervals of the larger hole
radius, R0

1 , where we found quite different stability and bifurcation behaviour (§ 5).
Within each of these intervals a representative value of R0

1 was chosen, the stability
limit parameters were calculated and illustrated as functions of R0

2 . To verify the
repeatability of these distinctive features of the stability patterns within each interval,
the same calculations were performed for other selected values of R0

1 .

2. Formulation of the problem
2.1. The equilibrium surface problem

We introduce cylindrical coordinates (ri, θi, zi) in the neighbourhood of each of the
axisymmetric equilibrium surfaces Γi(i = 1, 2) and place the origin at the tip of Γi .
Then a parametric representation ri = ri(si), zi = zi(si) of the surface Γi (si is the
arclength of an axial section θi = const of Γi) is the solution to (Myshkis et al. 1987)

r ′′
i = −z′

i β
′
i , z′′

i = r ′
i β ′

i , β ′
i = −bzi + qi − z′

i/ri (0 � si � si1,
′ = d/dsi), (3)

ri(0) = zi(0) = z′
i(0) = 0, r ′

i (0) = 1, βi(0) = 0. (4)

The section θi = const determinates the profile of the surface Γi; βi(si) is the angle
between the ri-axis direction and the tangent to the equilibrium profile which is di-
rected in the sense of increasing si; β ′

i(si) is the curvature of the profile; b = ρg/σ is
the capillary constant; si = 0 and si = si1 are the profile’s initial and terminal points; qi

is twice the mean curvature of the surface Γi at the point si = 0. System (3) represents
the Gauss–Laplace capillary equation. The terminal points si = si1 of the equilibrium
profiles must satisfy the conditions

ri(si1; qi) = r0
i (i = 1, 2), (5)

where r0
i are the hole radii, while the parameters q1 and q2 are related by the condition

that the liquid pressures are equal where the drop surfaces meet the plate

q1 − bz1(s11; q1) = q2 − bz2(s21; q2). (6)

The volume vi of each drop is

vi = π

∫ si1

0

r2
i (si; qi)z

′
i(si; qi) dsi . (7)
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2.2. The stability problem

The determination of stability is based on an analysis of the second variation of
the potential energy under arbitrary perturbations subject to the constant volume
constraint, (1a). The mathematical approach follows the method described in
Slobozhanin (1983) and Myshkis et al. (1987, § 3.12).

(a) Stability to axisymmetric perturbations that are non-isochoric on each Γi

Arbitrary perturbations can be represented in the form

Ni(si, θi) =ϕi(si) +

∞∑
n=1

[ϕin(si) cos(nθi) + ψin(si) sin(nθi)]. (8)

Since non-axisymmetric perturbations (n � 1) are isochoric, only axisymmetric pertur-
bations need be analysed in the study of the stability to NI-perturbations on each
surface Γi .

This stability problem is reduced to the determination of the sign of the smallest
eigenvalue λ1 of the following boundary problem:

Liϕi + µ = λϕi (0 � si � si1; i = 1, 2), (9)

ϕi(si1) = 0,

2∑
i=1

∫ si1

0

ri ϕi dsi = 0, (10a, b)

where

Liϕi ≡ −ϕ′′
i − r ′

i

ri

ϕ′
i + [−br ′

i − (z′
i/ri)

2 − β ′2
i (si)] ϕi. (11)

The equilibrium is stable if λ1 > 0, and is unstable if λ1 < 0. An unknown constant µ

is determined from the condition (10b). This condition means that all perturbations
adhere to the condition (1b). It should be emphasized that the problem (9)–(10)
involves both surfaces Γ1 and Γ2 and cannot be split into two independent problems
for each Γi . It can be deduced from results presented in Slobozhanin (1983) and
Myshkis et al. (1987) that the stability condition (λ1 > 0) assumes the form

u1 (s11) D2 (s21) + u2 (s21) D1 (s11) < 0. (12)

Here,

Di(si) = ui(si)

∫ si

0

ri(si)fi(si) dsi − fi(si)

∫ si

0

ri(si)ui(si) dsi, (13)

ui(si) and fi(si) are the solutions (bounded at si = 0) of the equations

Liui = 0, Lifi + 1 = 0. (14)

(b) Stability to perturbations that are isochoric on each Γi

To examine the stability to IC-perturbations we use the method described by
Myshkis et al. (1987, § § 3.3, 3.9). For a given qi , the surface Γi is stable to axisymmetric
IC-perturbations if the terminal point si1 < s∗

i1, is critical if si1 = s∗
i1, and is unstable to

these perturbations if si1 > s∗
i1. Here, si = s∗

i1 is the first zero of the function Di (si).
The surface Γi is critical to non-axisymmetric perturbations if

z′
i(si1) = 0 (15)

and z′
i(si) �= 0 on the interval 0 <si < si1.
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3. Zero gravity
3.1. Stability condition

Under zero-gravity conditions (b = 0), the equilibrium surface consists of two sphe-
rical segments of equal radii, ℘1 = ℘2 ≡ ℘0, so that q1 = q2 ≡ q0. The shapes and
characteristics are described as

ri =
2

q0

sin
q0si

2
, zi =

2

q0

(
1 − cos

q0si

2

)
, βi =

1
2
q0si, (16)

vi =
8 π

3 q3
0

(
1 − cos

q0 si1

2

)2(
2 + cos

q0 si1

2

)
. (17)

Since

ui = cos
q0 si

2
, fi =

2

q2
0

, Di(si) = − 4

q4
0

(
1 − cos

q0si

2

)2

, (18)

the stability condition (12) can be written in the form

cos β11 (1 − cosβ21)
2 + cos β21 (1 − cos β11)

2 > 0, (19)

where βi1 = q0si1/2 is the polar angle of the spherical segment Γi .

3.2. Equal radii holes

It follows from (5) and (16) that for holes of equal radii (r0
1 = r0

2 ≡ r0) we have
either β11 =β21 or β11 +β21 = 180◦. According to (19), a pair of identical segments
(β11 = β21) is stable if β11 = β21 < 90◦, and is unstable if β11 = β21 > 90◦. (This is in
agreement with result of Searle, 1934, that the stability limit for a solitary spherical
segment perturbed under a constant-pressure constraint is a hemisphere and with the
statements (i) and (ii) in § 1.2.) It also follows from (19) that non-identical segments
(β11 �= β21, β11 + β21 = 180◦) are stable.

The above results are well known. They were explained by Boys (1902) more than
100 years ago. As the total protruded volume of two drops exceeds that for two
hemispheres, the stable system consists of two non-identical drops. This is because
the segments Γ1 and Γ2 with β11 +β21 = 180◦ are the complements to an entire sphere,
and their total area assumes a global minimum for a given total volume. The critical
state of two hemispheres is stable for the same reason. Thus, loss of stability of a pair
of identical spherical segments results in a continuous transition to a stable system
of non-identical segments. This was also described later by Adamson (1960).

The stability of segments pinned to edges of equal radii holes has been clearly
demonstrated by the bifurcation diagram drawn by Wente (1999) and shown in
figure 4. Here, the relative volumes, V̄1 and V̄2, and the total relative volume, V̄tot, are
determined as

V̄ i = vi/[π(r0)3] (i =1, 2), V̄tot = V̄1 + V̄2. (20)

The bifurcation point V̄tot = 4/3 corresponds to two hemispheres. For V̄tot > 4/3,
there exist three equilibrium states: an unstable state with two identical spherical
caps greater than a hemisphere (β11 =β21 > 90◦), and two stable states with unequal
spherical caps. On the upper branch (V̄1 − V̄2 > 0), the first cap is greater than
a hemisphere (β11 > 90◦), and the second is less than a hemisphere (β21 < 90◦). In
contrast, the lower branch (V̄1 − V̄2 < 0) corresponds to states with β11 < 90◦ and
β21 > 90◦. Clearly, these branches are symmetric about the horizontal line V̄1 − V̄2 = 0.
It should be stressed that loss of stability of identical spherical caps occurs with
respect to NI-perturbations.
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Figure 4. Bifurcation diagram for the system of two zero-gravity drops in contact with edges
of equal radii holes (after Wente 1999). Solid (dashed) lines correspond to stable (unstable)
states. Inserts depict characteristic shapes of the states. The open circle (V̄tot = 4/3, V̄1 − V̄2 = 0)
corresponds to the state with two hemispheres.

3.3. Unequal radii holes

Hereinafter, in studies of the stability problem for unequal holes we assume that
r0
1 >r0

2 . Then,

K ≡ r0
2

/
r0
1 � 1. (21)

In definition of the relative volumes, the radius r0
1 is used as characteristic length, so

that instead of (20) we have

V̄i = vi

/[
π
(
r0
1

)3]
(i = 1, 2). (22)

The volumes V̄tot and V̄1 − V̄2 can be presented in the form

V̄tot =
1

3 sin3 β11

[(1 − cos β11)
2(2 + cosβ11) + (1 − cos β21)

2(2 + cosβ21)], (23)

V̄1 − V̄2 =
1

3 sin3 β11

[(1 − cos β11)
2(2 + cosβ11) − (1 − cosβ21)

2(2 + cosβ21)], (24)

where β11 and β21 are related by

sinβ21 =K sin β11. (25)

For a given K (0 < K < 1), a typical bifurcation diagram is shown in figure 5. It
consists of isolated solutions that perturb a classical pitchfork bifurcation for K = 1.
Such behaviour is well-known (see, for example, Iooss & Joseph 1997, chap. 3).
The left-hand segment, OA, of the upper branch corresponds to a system of two
spherical caps less than a hemisphere (β11 < 90◦, β21 < 90◦). Clearly, these states
are stable (since each cap is CP-stable). Branch Ak represents states with the first
cap greater (β11 > 90◦) and the second cap smaller (β21 < 90◦) than a hemisphere.
Calculations have shown that the stability condition (19) holds for all these states and
any K, 0 <K < 1. The branch Bm represents systems for which both spherical caps
are greater than a hemisphere (β11 > 90◦, β21 > 90◦). These systems are NI-unstable.
If the first cap is smaller (β11 < 90◦) and the second is greater than a hemisphere, the
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Figure 5. Bifurcation diagram for the system of two zero-gravity drops in contact with edges
of unequal radii holes (K = 0.5). Solid and dashed lines correspond to stable and unstable states,
respectively. Thin lines relate to the case of K =1 (see figure 4). Inserts show configurations
of equilibrium states.

R0

K β11 β21 V̄tot V̄1 − V̄2

0.1 80.12◦ 174.35◦ 1.914 −0.875
0.2 80.12◦ 168.64◦ 1.914 −0.875
0.3 80.12◦ 162.81◦ 1.912 −0.873
0.4 80.13◦ 156.79◦ 1.907 −0.868
0.5 80.15◦ 150.49◦ 1.897 −0.857
0.6 80.20◦ 143.75◦ 1.877 −0.836
0.7 80.30◦ 136.37◦ 1.842 −0.798
0.8 80.53◦ 127.90◦ 1.779 −0.729
0.9 81.14◦ 117.22◦ 1.665 −0.600

Table 1. Characteristics of NI-critical zero-gravity systems consisting of two spherical drops
in contact with edges of unequal radii holes for different values of K ≡ r0

2/r0
1 .

system may be stable or unstable. The segment BC and the branch Cn (figure 5)
represent unstable and stable states, respectively, while the critical state corresponds
to the point C which is a regular turning point. Characteristics of the critical systems
for a set of K are given in table 1. The values of β11 for stable states are less than
the critical value.

4. Effect of gravity: drops hanging from equal radii holes

For non-zero gravity (b �= 0), we use b−1/2(≡
√

σ/ρg) as the characteristic length
and employ the following dimensionless variables and values

Ri =
√

b ri, Zi =
√

b zi, Si =
√

b si, Qi = qi/
√

b, Vi = b3/2 vi. (26)
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Figure 6. Dimensionless pressure difference across the interface in the plane of hole, Q − H ,
for different dimensionless values R0 of the hole radius as a function of dimensionless drop
height, H .

Under this transformation, we should set b = 1 in equations (3), (6) and (11). When
dealing with characteristics that are the same for both drops, the sub index i (i =1, 2)
will be omitted.

4.1. Reference pressure characteristics

When two separate equilibrium drops pinned to the edges of holes are linked, they
form an equilibrium system only when

Q1 − H1 =Q2 − H2, (27)

where Hi is the dimensionless height of the ith drop. This relationship for two
connected equilibrium drops follows from the constraint (6). Hence, the variation of
(Q − H ) along the vertical line R =R0 (figure 2) corresponding to a given hole radius
is one of the most important characteristics of pendant drops.

For selected values of R0, the function (Q − H ) of H is shown in figure 6. The initial
point (the origin) corresponds to a ‘drop’ with horizontal free surface (Q = 0, H = 0),
while the terminal point of each line corresponds to the solitary drop which is IC-
critical (i.e. to the drop with the profile bounded in figure 2 by the point of intersection
of the vertical line R = R0 and the boundary OtAB). The distinctive feature of each
curve related to R0 < 2.4048 is that it has a point with a maximum value of (Q − H ).
This point exactly corresponds to the solitary drop that is CP-critical (i.e. to the
drop with the profile bounded in figure 2 by the point of intersection of the vertical
line R = R0 and the curve OwC). To the left of this point, drops on the curve are
CP-stable while to the right they are CP-unstable. The maximum (Q − H ) tends to
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Figure 7. Q − H for drops hanging from holes of equal radii, R0
1 = R0

2 = 1. Two connected
identical drops are stable if the point lies on OA1, and are unstable otherwise. Horizontal thin
solid lines (dotted lines) depict a correspondence between two non-identical stable (unstable)
drops. Two non-identical drops with respective points J ′

1 and J ′′
1 form a critical system.

A single drop corresponding to the dot-square point is critical to isochoric perturbations.
Branch I, OA1-identical; branch II–1, A1J

′
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1 H ′′

1 I ′′
1 ; branch III

(A′′
1H

′′
1 I ′′

1 -identical).

the origin as R0 → 2.4048. The maximum value of (Q − H ) as a function of R0

can be found in Slobozhanin & Alexander (2003). Points of curves with R0 > 2.4048
(figure 6) correspond to CP-unstable solitary drops. The value of (Q − H ) along these
curves decreases monotonically and is negative everywhere except the origin.

4.2. The case R0
1 = R0

2 = 1

To illustrate the stability of two connected drops with free surfaces pinned to edges
of equal radii holes, we first consider the case of R0

1 = R0
2 = 1. A family of equilibrium

drops exists along the curve shown in figure 7. Any solitary drop along the segment
OA1 is CP-stable. To the right of point A1, solitary drops are CP-unstable. If two
connected drops are represented by the same point on the segment OA1 in figure 7, the
drops are identical and according to conclusion (i), stated in § 1.2, form a stable system.
Stable systems of identical drops correspond to points of branch I in the bifurcation
diagram (figure 8). This branch is a horizontal segment V1 − V2 = 0, 0 � Vtot � 2.798.
As volume Vtot ≡ V1 +V2 increases from 0 to 2.798, a continuous shape evolution
occurs for identical drops. The terminal point of each profile moves along the vertical
line R = 1 from Z = 0 up to a point on the curve OwC. The terminal point on this
curve determines the critical profile for connected identical drops.

If two drops are represented as a point to the right of point A1 (figure 7),
they correspond to an unstable system of connected identical drops. Such a system
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corresponds to a point on branch III (figure 8), and the terminal point of the profile
lies on the line R = 1 above the curve OwC.

Two non-identical drops are in equilibrium if they have equal values of (Q − H ).
A correspondence between these drops is established through the horizontal tie-lines
shown in figure 7. The most interesting is the case when one drop is CP-stable and
the other drop is CP-unstable. According to our calculations, states of pairs of non-
identical drops that bifurcate from the limiting pair of stable identical drops are stable.
In other words, a system of two connected drops [with equal (Q − H )] that corres-
ponds to two points that lie in the neighbourhood of the point A1 (figure 7) is stable.
The stability holds as the (Q − H ) value decreases until the critical state determined
by the points J ′

1 and J ′′
1 is attained. It should be emphasized that here the system

loses stability to NI-perturbations, and this occurs slightly earlier than for a solitary
drop that is critical to IC-perturbations (see the adjacent point marked by a square).

On the bifurcation diagram, the branch labelled as II – 1 (figure 8) relates to
stable non-identical drops. As the total protruded volume, Vtot, increases and passes
through 2.798, a continuous transition (pitchfork bifurcation) occurs from a critical
system of identical drops to a stable system of non-identical drops. The system of two
non-identical drops remains stable until the total protruded volume reaches the local
maximum value of 5.330. The critical state J ′

1−J ′′
1 corresponds to this maximum value

and is a turning point. The branch II – 2 relates to unstable systems of connected
non-identical drops. One of these drops is CP-unstable and corresponds to a point
on the segment J ′′

1 H ′′
1 I ′′

1 (figure 7) and the other is CP-stable (the correspondence
between the drops is shown by dotted lines). The endpoint I ′′

1 in this correspondence
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was chosen arbitrarily. For example, such a correspondence may be extended beyond
the point I ′′

1 to higher values of H , but it will not lead to a change in the stability.
For total volumes that exceed the critical value 2.798 for identical drops, the stable

system consists of two non-identical drops. One of them has a volume greater than the
critical volume of 1.399 and is CP-unstable. In contrast, the volume of the other drop
is less than 1.399, and this drop is CP-stable. The deviation of each drop from the
shape of critical identical drops increases with Vtot. A critical system of non-identical
drops is determined by two drops with Vtot = 5.330. Upon further increase in Vtot, the
system loses its stability, and the liquid is expected to drip or stream from the holes.

In contrast to the zero-gravity case, it can be seen that connected non-identical
pendant drops reach their stability limit as the total dimensionless protruded liquid
volume increases.

4.3. The general case

In a qualitative sense, the stability features described above for R0
1 = R0

2 = 1 are
common to all equal radii holes R0

1 =R0
2 = R0 with 0 <R0 < 2.4048. As discussed

earlier, the line OwC in figure 2 represents the hole radius R = R0 dependence of the
critical height for identical drops, Z = H ∗

id . For connected identical drops, the critical
volume of each drop as a function of R0 is shown in figure 3 by the solid line.

To find the critical systems for pairs of non-identical drops, calculations were carried
out for a set of R0 values with increments in the range from 0.01 to 0.05 (see table 2).
The shape of critical drops can be estimated from figure 9, where the curves H ∗

1 and
H ∗

2 are presented along with the curve H ∗
id and the typical equilibrium profiles. The



Stability of two connected drops suspended from circular holes 335

R0 H ∗
1 V ∗

1 Q∗
1 H ∗

2 V ∗
2 Q∗

2 (Q − H )∗

0.0500 0.0027 0.0000 4.2484 0.9624 0.2808 5.2082 4.2457
0.1000 0.0078 0.0001 3.1002 1.2520 0.5312 4.3444 3.0924
0.1500 0.0142 0.0005 2.5022 1.4557 0.7665 3.9437 2.4880
0.2000 0.0212 0.0013 2.1054 1.6141 0.9943 3.6983 2.0842
0.2500 0.0286 0.0028 1.8122 1.7429 1.2191 3.5266 1.7836
0.3000 0.0359 0.0051 1.5817 1.8507 1.4443 3.3965 1.5458
0.3500 0.0430 0.0083 1.3930 1.9425 1.6721 3.2925 1.3500
0.4000 0.0496 0.0125 1.2338 2.0217 1.9042 3.2059 1.1842
0.4500 0.0556 0.0177 1.0964 2.0907 2.1418 3.1315 1.0408
0.5000 0.0609 0.0239 0.9758 2.1513 2.3859 3.0662 0.9149
0.5500 0.0653 0.0310 0.8683 2.2047 2.6370 3.0077 0.8030
0.6000 0.0687 0.0387 0.7713 2.2519 2.8957 2.9545 0.7026
0.6500 0.0710 0.0469 0.6828 2.2937 3.1624 2.9054 0.6118
0.7000 0.0722 0.0552 0.6013 2.3305 3.4371 2.8597 0.5291
0.7500 0.0720 0.0630 0.5256 2.3629 3.7201 2.8165 0.4536
0.8000 0.0704 0.0700 0.4547 2.3912 4.0112 2.7755 0.3843
0.8500 0.0674 0.0754 0.3880 2.4156 4.3105 2.7362 0.3206
0.9000 0.0628 0.0786 0.3247 2.4363 4.6177 2.6982 0.2619
0.9500 0.0566 0.0787 0.2644 2.4534 4.9326 2.6612 0.2078
1.0000 0.0486 0.0748 0.2067 2.4670 5.2547 2.6250 0.1580
1.0500 0.0389 0.0659 0.1512 2.4771 5.5836 2.5893 0.1122
1.1000 0.0274 0.0508 0.0977 2.4835 5.9186 2.5538 0.0703
1.1500 0.0140 0.0283 0.0461 2.4861 6.2588 2.5182 0.0321
1.2000 −0.0012 −0.0026 −0.0036 2.4847 6.6029 2.4823 −0.0024
1.2500 −0.0182 −0.0431 −0.0513 2.4788 6.9496 2.4457 −0.0331
1.3000 −0.0367 −0.0939 −0.0966 2.4678 7.2963 2.4079 −0.0599
1.3500 −0.0565 −0.1554 −0.1389 2.4510 7.6401 2.3686 −0.0824
1.4000 −0.0769 −0.2267 −0.1770 2.4272 7.9764 2.3270 −0.1001
1.4500 −0.0968 −0.3053 −0.2094 2.3951 8.2986 2.2825 −0.1126
1.5000 −0.1147 −0.3860 −0.2339 2.3531 8.5973 2.2339 −0.1192
1.5500 −0.1285 −0.4601 −0.2476 2.2996 8.8603 2.1805 −0.1191
1.6000 −0.1356 −0.5155 −0.2477 2.2332 9.0725 2.1212 −0.1120
1.6500 −0.1334 −0.5370 −0.2316 2.1532 9.2174 2.0551 −0.0982
1.7000 −0.1196 −0.5087 −0.1980 2.0598 9.2794 1.9815 −0.0783
1.7500 −0.0923 −0.4142 −0.1460 1.9532 9.2439 1.8995 −0.0537
1.8000 −0.0498 −0.2350 −0.0754 1.8333 9.0956 1.8077 −0.0256
1.8500 0.0107 0.0530 0.0155 1.6984 8.8137 1.7032 0.0048
1.9000 0.0938 0.4889 0.1304 1.5444 8.3627 1.5810 0.0366
1.9500 0.2106 1.1514 0.2796 1.3604 7.6672 1.4294 0.0690
2.0000 0.3965 2.2751 0.4980 1.1110 6.4958 1.2125 0.1015
2.0100 0.4536 2.6293 0.5616 1.0415 6.1305 1.1495 0.1080
2.0200 0.5269 3.0859 0.6410 0.9561 5.6623 1.0702 0.1141
2.0300 0.6190 3.6648 0.7370 0.8514 5.0710 0.9694 0.1180
2.0500 0.6577 3.9630 0.7680 0.7842 4.7399 0.8945 0.1103
2.1000 0.6421 4.0289 0.7290 0.7195 4.5218 0.8065 0.0869
2.1500 0.6035 3.9377 0.6690 0.6642 4.3376 0.7297 0.0655
2.2000 0.5495 3.7242 0.5960 0.6071 4.1166 0.6535 0.0465
2.2500 0.4859 3.4173 0.5160 0.5370 3.7777 0.5670 0.0301
2.3000 0.4055 2.9567 0.4220 0.4502 3.2835 0.4667 0.0165

Table 2. Parameters of a critical system with non-identical drops suspended from holes of
equal radii R0.

shapes of drops are uniquely determined by the terminal points of the equilibrium
profiles. In turn, the terminal points of profiles related to two connected non-identical
critical drops are the points of the curves H ∗

1 and H ∗
2 with given R = R0. The
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2 , of non-identical drops suspended from edges of holes with equal

dimensionless radii, R0. The dashed line shows the stability limit for a single drop with respect
to isochoric perturbations.

distinctive feature of these curves is that they make a sharp approach to the curve
H ∗

id as R0 exceeds 2.0. On the other hand, as R0 tends to zero, the curve H ∗
2 coincides

approximately with (but slightly lower than) the boundary, OtA, of solitary drop
stability to IC-perturbations. Another feature of the curves is that H ∗

1 is negative for
1.20 <R0 < 1.84. This means that the related critical equilibrium surface is convex
upwards, and bounds a ‘sessile bubble’ rather than a ‘pendant drop’. Profiles of sessile
bubbles correspond to Q < 0 and represent a mirror reflection (with respect to the
R-axis) of profiles for pendant drops. Thus, for 1.20 < R0 < 1.84, the critical system
consists of a large pendant drop and a small sessile bubble. The maximum value
of the critical height H ∗

2 is 2.486 and is achieved at R0 = 1.16. The shape of the
related drop is determined by Q =2.511. The minimum value of H ∗

1 is −0.136 and
corresponds to a bubble with R0 = 1.61 and Q = −0.246.

As in the cases of a solitary drop and a system of connected identical drops,
the dimensionless protruded volume is the most prominent integral characteristic of
stability for a system of non-identical drops. Notice that the protruded volume is
bounded by a drop free surface and the plane of the hole. For a sessile bubble,
the volume is withdrawn into the bulk liquid side of the plate and is negative.
As indicated above, the solid line in figure 3 may be considered as representing
the dependence of the critical dimensionless volume of each of identical pendant
drops on the dimensionless hole radius. In addition to the curves already shown in
figure 3, figure 10 depicts the critical volumes, V ∗

1 and V ∗
2 , for non-identical drops.
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The maximum value of the critical volume V ∗
2 was found to be 9.281 (the drop

with R0 = 1.71 and Q =1.966), while the minimum value of V ∗
1 is −0.537 (R0 = 1.65,

Q = −0.232). Although the curves V ∗
isochoric and V ∗

2 in figure 10 appear as merged at
small values of R0, it should be emphasized that the larger of the two non-identical
drops has a critical volume that is always less than the critical volume for a solitary
drop subject to IC-perturbations.

The two-drop stability is best characterized by the total protruded dimensional
liquid volume, Vtot = V1 + V2. The thick solid line in figure 11 depicts a critical
total volume for identical drops that is twice the critical volume for each of the
identical drops (see figure 10). The thin solid line shows the stability limit for non-
identical drops and represents the sum, V ∗

1 +V ∗
2 , of critical volumes already shown

in figure 10. Despite the fact that the total critical volume for non-identical drops
always exceeds that for identical drops, both the solid lines practically merge when
R0 exceeds 2.0. As shown in figure 11, the maximum value of V ∗

1 + V ∗
2 for non-

identical drops is 8.867, and occurs when R0 = 1.84. For IC-perturbations, the critical
volume for a solitary drop hanging from the hole of the same radius (R0 = 1.84)
is 11.578. For 1.16 � R0 � 2.4048, the maximum volume for an IC-stable solitary
drop is always greater than the maximum total volume for a stable system of two
connected drops suspended from holes of the same radius R0. The dashed line in
figure 11 corresponds to the case when NI-perturbations are ignored. Then the
critical system would consist of two identical drops critical to IC-perturbations, and
the total critical volume would be twice the critical volume for a solitary drop under
IC-perturbations.
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1 � R0
2 restricts the region of interest.)

5. Effect of gravity: drops hanging from unequal radii holes
First we report the known results related to the simplest case of flat free surfaces

(Q1 = Q2 = 0) pinned to edges of holes in the plate. These results are required as
a starting point for the bifurcation analysis described in the subsequent subsections
where we consider stable drops with horizontal free surfaces as initial shapes for
connected drops with curved free surfaces. For unequal radii holes, R0

2 <R0
1 , there are

three intervals of the larger radius values, 0 <R0
1 < 2.4048, 2.4048 <R0

1 < 3.219 and
3.219 <R0

1 < 3.8317, within which the stability characteristics for systems with curved
surfaces have similar properties. Each of these intervals is examined and discussed in
the following subsections.

5.1. Horizontal free surfaces

When both drops are bounded from below by horizontal free surfaces (Qi = 0, Zi ≡ 0,
Ri ≡ Si) pinned to edges, the condition (12) of the stability to NI-perturbations
assumes the form (Slobozhanin 1983)

D0 ≡ 1
2

(
R02

1 + R02

2

)
J0

(
R0

1

)
J0

(
R0

2

)
− R0

1 J0

(
R0

2

)
J1

(
R0

1

)
− R0

2 J0

(
R0

1

)
J1

(
R0

2

)
< 0. (28)

When IC-perturbations are taken into account, the supplementary restriction,

R0
1 < 3.8317, (29)

must be applied to ensure stability. Thus, the inequalities (28), (29) provide the condi-
tions for stability to arbitrary perturbations. This stability region is shown in figure 12.
The curve D0 = 0 and the vertical line R0

1 = 3.8317 intersect at the point with
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2 ,
critical states are determined by the points on solid segments, dashed segments, and dot-dash
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R0
2 = 2.1731. The curve D0 = 0 and dot-dash line R0

1 =R0
2 intersect at the point

R0
1 = R0

2 = 2.4048 which determines the stability limit for equal diameter holes, as was
mentioned above. Thus, for 0<R0

2 < 2.1731, loss of stability occurs with respect to
non-axisymmetric perturbations (when R0

1 exceeds 3.8317). If 2.1731 < R0
2 < 2.4048,

NI-perturbations become the most dangerous. Finally, if R0
2 > 2.4048, systems with

horizontal free surfaces become unstable (this is consistent with conclusion (ii) in
§ 1.2). For plane free surfaces Γ1 and Γ2, the critical sizes of the holes are greater
than those for curved surfaces. Thus, the critical radii determined by (28) and (29)
are the maximum possible radii of holes for any stable equilibrium of two connected
suspended drops.

5.2. Systems with 0 <R0
1 < 2.4048

We first consider the case R0
1 = 1. A verification of the stability condition (12) for

two drops related by the equal reference pressures constraint (27) allows us to find
systems critical to NI-perturbations with a fixed radius R0

1 = 1 of the larger hole and
a variable radius R0

2 of the smaller hole. The heights of drops for such systems are
shown in figure 13. First in our calculations we proceed from the point A1 (figure 13)
which corresponds to a system of two identical critical drops with equal radii holes
R0

1 = R0
2 = 1. This system also corresponds to the point A1 in figures 7–8. From this

starting position, the system parameters are varied so that a continuous extension of
critical systems in the direction of R0

2 < 1 is obtained. In this extension, for R0
1 = 1,
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there is a local minimum R0
2 = 0.5106. Further variation of the system parameters

leads to the bending of the neutral stability curve and this leads to the second branch
of critical states. The first and second branches are shown as solid and dashed lines,
respectively, in figure 13. Both branches exist for 0.5106 <R0

2 � 1. The point of
intersection of the second branch with the line R0

2 = 1 determines the second critical
state for the system with R0

1 = R0
2 = 1. This state corresponds to critical non-identical

drops and is determined by the points J ′
1 and J ′′

1 in figure 7. Since H ∗
2 >H ∗

1 along
the second branch, this state is also the lower (V1 − V2 < 0) of the two symmetrical
critical states shown in figure 8.

For R0
1 =R0

2 = 1, states that correspond to points within the segments A1J
′
1 and A1J

′′
1

are stable. Likewise, for 0.5106 < R0
2 < 1, states determined by points that lie within

segments bounded by two branches of critical states are stable to NI-perturbations.
For example, for R0

2 = 0.8, these segments are C ′
1B

′
1 and C ′′

2B
′′
2 in figure 13. It should

be emphasized that the value H ∗
2 along the second branch is less than the IC-critical

value for a solitary drop 2 with a radius R0 = R0
2 . It follows that NI-perturbations are

the most dangerous along both branches.
There exists another family of states critical to NI-perturbations. It proceeds from

the critical state for R0
1 = R0

2 = 1 (determined by the points J ′
1 and J ′′

1 in figure 7) and
by the upper (V1 − V2 > 0) of the two symmetrical critical states shown in figure 8. For
this family, H ∗

1 > H ∗
2 . This third branch of critical states exists for 0 <R0

2 � 1. The H ∗
1

value increases monotonically as R0
2 decreases, and tends to the value 2.512 as R0

2 → 0.
This value corresponds to a solitary drop 1 (with R0

1 = 1) critical to IC-perturbations.
The value of H ∗

2 decreases as R0
2 decreases and tends to zero as R0

2 → 0. Thus, for any
0 <R0

2 � 1, the loss of stability occurs with respect to NI-perturbations rather than
losing stability because drop 1 becomes IC-unstable.

To gain greater insight into the effect of the value of R0
2 , we constructed the

bifurcation diagrams for different R0
2 to account for IC-perturbations and NI-

perturbations. First, we consider R0
2 values in the interval 0.5106 <R0

2 < 1.
Figure 14 shows two curves that originate at (0,0). Each curve is associated with a

family of drops designated as family 1 (lower curve) and family 2 (upper curve). The
drops in family 1 hang from holes of radius R0

1 = 1 and those of family 2 hang from
holes with radius R0

2 = 0.8. According to conclusion (i) (§ 1.2), the correspondences
shown in figure 14(a) determine the branch of stable equilibrium states of two
connected drops. It is marked as branch I in figure 15. Correspondences (see figure 14b)
between points of the segments A1F

′′
1 (family 1) and A′

2F
′
2 (family 2) also determine

stable states for pairs of connected drops. They belong to the branch II – 1 in
figure 15. The coupled drops corresponding to the points F ′′

1 and F ′
2 are NI-critical

(see also these same drops marked as F ′′
1 and F ′

2 in figure 13). Correspondences
between CP-stable solitary drops of family 2 and IC-unstable solitary drops of family
1 beyond the stability limit to NI-perturbations are also illustrated by dotted lines in
figure 14(b). These correspondences determine states of pairs of drops on the branch
II – 2 in figure 15. States on this branch are NI-unstable. The terminus of this branch
is shown as a filled circle and corresponds to the arbitrarily chosen pair of drops
I ′
2 − I ′′

1 . Thus, pairs of drops consisting of a CP-stable solitary drop from family 2 and
a CP-unstable solitary drop from family 1 may be stable (branch II – 1) or unstable
(branch II – 2). The loss of collective stability to NI-perturbations occurs before the
solitary drop of family 1 becomes critical to IC-perturbations. The critical system
serves as a turning point on the bifurcation diagram. In contrast, for zero-gravity
(see branch Ak in figure 5), a pair of drops consisting of a CP-unstable drop from
family 1 and a CP-stable drop from family 2 is always stable.
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Figure 14. Dependence of the dimensionless reference pressure (Q − H ) on H for drops
with free surfaces pinned to edges of holes with radii R0

1 = 1 and R0
2 = 0.8. Points of solid

(dashed) segments correspond to solitary IC-stable (IC-unstable) drops. Horizontal straight
lines establish correspondence between two drops with equal reference pressures. Thin solid
lines correspond to pairs of stable connected drops; dotted lines – to unstable connected
drops; and dot-dash lines to critical systems of connected drops. Correspondences are grouped
together by stability or instability of solitary drops of families 1 (R0

1 = 1) and 2 (R0
2 = 0.8)

to CP-perturbations. (a) Branch I (OA
′

2 − OA1). Drops of families 1 and 2 are CP-stable.

(b) Branch II-1 (A
′

2F
′

2 − A1F
′′

1 ); Branch II-2 (F
′

2H
′

2I
′

2 − F
′′

1 H
′′

1 I
′′

1 ). Drops of the family 2 are

CP-stable and drops of the family 1 are CP-unstable. (c) Branch III (A1E
′′

1A1 − A
′′

2E
′′

2A
′′′

2 )

Drops of families 1 and 2 are CP-unstable. (d) Branch IV-1 (A1B
′

1 − A
′′

2B
′′

2); branch IV-2

(B
′

1C
′

1 − B
′′

2C
′′

2); branch IV-3 (C
′

1E
′

1A1 − C
′′

2E
′′

2A
′′′

2 ) Drops of the family 1 are CP-stable and
drops of the family 2 are CP-unstable.

Correspondences shown in figure 14(c) between CP-unstable solitary drops deter-
mine states of pairs of drops that are definitely unstable according to conclusion (ii)
of § 1.2. These states correspond to the points of branch III in figure 15. The initial
point on the bifurcation diagram (the boundary point between segments III and IV –
1) corresponds to the pair of drops A1 −A′′

2. The remainder of branch III corresponds
to the pairs resulting from moving along the family 2 from the drop A′′

2 to the drop
A′′′

2 (figure 14c). The terminal point of branch III shown as a filled circle corresponds
to the pair A1 − A′′′

2 . Branch III is a continuous curve, part of which lies outside the
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Figure 15. Bifurcation diagram for two connected drops suspended from holes of radii
R0

1 = 1 and R0
2 = 0.8. Solid (dashed) lines correspond to stable (unstable) states.

field of figure 15. Here the curve bends upward, the value of Vtot reaches its maximum,
and the curve turns back.

Branch IV is associated with pairs of drops, one drop from family 1 that is CP-
stable and one drop from family 2 that is CP-unstable (figure 14d). Correspondences
are established from drop A′′

2 to drop A′′′
2 along family 2. The pairs of drops from

the segments A′′
2B

′′
2 and A1B

′
1 are presented as the segment IV – 1 on the bifurcation

diagram in figure 15. Like states of the branch III, these systems are unstable. Stability
is restored for pairs of drops that correspond to interior points of the segments B ′′

2 C ′′
2

and B ′
1C

′
1 (figure 14d). These are just the stable states described above and shown in

figure 13 at R0
2 = 0.8. Attention is drawn to the fact that solitary drops related to these

states are also IC-stable (the solitary drop from family 2 critical to IC-perturbations
corresponds to the point D′′

2 in figure 14d). On the bifurcation diagram, these states
correspond to the interior points of the segment IV – 2, while critical states are the
turning points. Finally, drops of family 2 that are presented as points of the segment
C ′′

2D
′′
2E

′′
2A

′′′
2 (figure 14d) and corresponding drops of family 1 (the segment E′

1A1)
form pairs that are unstable (the branch IV – 3 on the bifurcation diagram). In
comparison to the case of zero-gravity (branch Cn of figure 5) the lower segment of
stable states (segment IV – 2 in figure 15) is no longer semi-infinite but is bounded
by two turning points on the bifurcation diagram.

If R0
2 < 0.5106, then according to figure 13 the stable states on the lower segment

of the bifurcation diagram should disappear. To gain a better understanding of the
evolution of this segment, equal reference pressure correspondences were established
not only between families of drops hanging from holes of radii R0

1 = 1 and R0
2 = 0.8,

but also between drops hanging from holes of radii R0
1 = 1 and R0

2 = 0.5, 0.4 and 0.3
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Figure 16. Dimensionless reference pressure, (Q − H ), as a function of H for R0
1 = 1 and a

set of R0
2 values. The dot-centred squares on each curve separate IC-stable (solid line) and

IC-unstable (dashed line) solitary drops. The dot-centred circles correspond to the maximum
values of (Q − H ). The horizontal dotted line indicates this value for R0

1 = 1.

(figure 16). We truncated the curves for R0
2 = const at points that lie above the dotted

line (the maximum (Q − H ) value for R0
1 = 1) because the remainders of these curves

are of no interest.
Bifurcation diagrams for R0

1 = 1and new values of R0
2 were constructed and

compared with the case R0
1 = 1, R0

2 = 0.8 (figure 17). Branches I, II – 1 and II –
2 for new values of R0

2 are similar to those for R0
2 = 0.8. Only branches I and II – 1

for R0
2 = 0.5 are shown in figure 17. Critical states and branches II – 2 almost coincide

for R0
2 = 0.8 and for R0

2 = 0.5. For R0
2 = 0.4 and 0.3, the branches I and II – 1 are not

plotted because they lie very close to those shown for R0
2 = 0.5.

For R0
2 = 0.8 and for new values of R0

2 , branches III and IV are distinctly different.
They are separated by points depicted as dot-circles and filled-circles in figure 17. We
see that the segment IV – 2 of stable states does not exist for R0

2 = 0.5, and R0
2 = 0.4.

Thus, for R0
2 < 0.5106, all states of the branches III and IV become unstable to NI-

perturbations. This means that the stability limits with respect to IC-perturbations
for solitary drops hanging from a hole of radius R0

2 and shown by dot-square points
in figure 17 do not affect our conclusions regarding the instability of branches III
and IV to arbitrary perturbations. Furthermore, branches III and IV shrink as R0

2

decreases and eventually disappear. For example, there are no branches III and IV
for R0

2 = 0.3 because all CP-unstable solitary drops hanging from a hole of radius
R0

2 = 0.3 have a reference pressure value, Q − H , that is greater than the maximum
value for R0

1 = 1 (see figure 16). Thus, the related correspondences and, consequently,
the equilibria are impossible.
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Figure 17. Evolution of the bifurcation diagrams for R0
1 = 1 as the smaller hole radius, R0

2 ,
changes. Solid (dashed) lines correspond to stable (unstable) states.

We have analysed the case of R0
1 = 1. For other values of R0

1 from the interval
0 <R0

1 < 2.4048, the situation is quite similar. The stable systems are universally
present (like those represented by branches I and II – 1 in figure 15) and are
bounded by the NI-critical state. Another branch of stable states (similar to that
presented by the segment IV – 2 in figure 15) exists if the radii R0

2 and R0
1 values are

sufficiently close. This branch is bounded by two states critical to NI-perturbations
(in total, we have three NI-critical states). What is the minimum R0

2 value with
these stable states for a prescribed R0

1? For R0
1 from the interval 0.2 � R0

1 � 2.0, these
values, R0

2min, are given in table 3. If 0<R0
1 � 0.15, the value of R0

2min is less than
0.005. On the other hand, for 2.05 � R0

1 < 2.4048, the difference R0
1 − R0

2min is less
than 0.0001.

5.3. Systems with 2.4048 <R0
1 < 3.219

According to conclusions (i) and (ii) in § 1.2, if 2.4048 <R0
1 < 3.8317, stable and critical

states may exist only for R0
2 < 2.4048. First, we consider the case of R0

1 = 3 that is
typical for 2.4048 <R0

1 < 3.219. As becomes apparent from the analysis of the stability
of two connected ‘drops’ with horizontal free surfaces (§ 5.1), the system with R0

1 = 3
may be stable only if R0

2 < 2.1954.
It follows from figure 6 that an IC-stable solitary drop hanging from the hole with

R0 = 3 has a non-positive reference pressure, whereas IC-stable solitary drops hanging
from the holes with R0 = 0.5 and 1 have non-negative reference pressures. To establish
the equal reference pressure correspondence for the system with two holes, R0

1 = 3 and
R0

2 = 0.5 or R0
2 = 1, we must replace one of the pendant drops with a sessile bubble.

For the sake of definiteness, we will always assume that a free surface in contact with
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R0
1 R0

2 min R0
1 R0

2 min R0
1 R0

2 min

0.20 0.0055 0.85 0.3368 1.50 1.2446
0.25 0.0107 0.90 0.3911 1.55 1.3264
0.30 0.0182 0.95 0.4491 1.60 1.4093
0.35 0.0285 1.00 0.5106 1.65 1.4926
0.40 0.0419 1.05 0.5750 1.70 1.5758
0.45 0.0585 1.10 0.6421 1.75 1.6577
0.50 0.0787 1.15 0.7115 1.80 1.7369
0.55 0.1027 1.20 0.7828 1.85 1.8119
0.60 0.1307 1.25 0.8560 1.90 1.8811
0.65 0.1630 1.30 0.9308 1.95 1.9437
0.70 0.1997 1.35 1.0072 2.00 1.9994
0.75 0.2409 1.40 1.0849
0.80 0.2867 1.45 1.1641

Table 3. Minimum values of the smaller hole radius, R0
2min , at which three NI-critical states

exist for given values of the larger hole radius R0
1 .

edges of the greater hole (with radius R0
1) is the surface of a pendant drop. When

a pendant drop is replaced with a corresponding sessile bubble, the substitution
Q → −Q, H → −H , V → −V should be performed. Then a curve shown in figure 6
for pendant drops is replaced with the curve symmetric with respect to the origin.
According to the calculation, for any R0

2 from the interval 0<R0
2 < 2.1954, stable and

critical systems may exist only if a surface pinned to edges of the smaller hole is a
sessile bubble surface. Figure 18 shows the curves (Q − H ) vs. H for pendant drops
with R0

1 = 3 and for sessile bubbles with R0
2 = 2, 1.5 and 1. For each pair of the R0

1

and R0
2 values, we proceed from the stable configuration consisting of two horizontal

free surfaces and corresponding to the point O in figure 18 and move in the direction
of the decreasing (Q − H ) value. Since all solitary drops hanging from the hole with
R0

1 = 3 are CP-unstable, pairs of drops may be NI-stable only if the sessile bubbles are
CP-stable (see conclusions (i) and (ii) in § 1.2). This means that they must lie on the
segment of the corresponding R0

2 curve bounded by the point O and the minimum
point of (Q − H ) (figure 18). Critical states are determined by NI-perturbations and
are shown as those corresponding to the points A1 and A2, B1 and B2, C1 and
C2, respectively. The shapes of these critical configurations are shown in figure 19.
Note that solitary pendant drops and sessile bubbles that form critical systems are
IC-stable. In particular, this is also true for the pendant drop corresponding to the
point C1in figure 18. The bifurcation diagrams shown in figure 20 indicate that the
critical systems represent turning points.

In the examples described above, we have analysed the systems with R0
1 = 3 and

three selected values of R0
2 . Characteristics of the critical systems as the functions of

R0
2 , 0 < R0

2 < 2.1954, are depicted in figures 21 and 22. In particular, for R0
2 = 2, 1.5

and 1, they are shown as the dot-circle points. For the critical system, as R0
2 → 0,

the drop hanging from the hole with R0
1 = 3 approaches a solitary IC-critical drop.

The latter has H1 = 2.276 and V1 = 18.693. In fact, the parameters H ∗
1 and V ∗

1 vary
only slightly for R0

2 < 1. The extreme right-hand point with R0
2 = 2.1954 corresponds

to the critical system consisting of two horizontal flat surfaces. Such a system served
as a starting point in our calculations of critical systems with curved free surfaces.
The corresponding point separates the critical characteristics H ∗

1 and H ∗
2 , V ∗

1 and V ∗
2

in figures 21 and 22.
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Figure 19. Shapes of critical configurations for R0
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2 .
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Similar calculations were also performed for the cases R0
1 = 2.5 and 2.75. The

results obtained were qualitatively identical to those described above for the case
R0

1 = 3.

5.4. Systems with 3.219 <R0
1 < 3.8317

Here, as in the interval 2.4048 < R0
1 < 3.219 considered above, for a fixed R0

1

the NI-critical system tends, as R0
2 → 0, to the system with drop 1 (with R0

1)
critical to axisymmetric IC-perturbations. The distinctive feature of the interval
3.219 <R0

1 < 3.8317, as noted in § 1.1, is that non-axisymmetric perturbations (always
isochoric) for the solitary drop 1 are more dangerous than axisymmetric IC-
perturbations. This means that non-axisymmetric perturbations of drop 1 also become
more dangerous in comparison to NI-perturbations of a pair of connected drops for
relatively small values of R0

2 . We first illustrate the stability of the systems with
3.219 <R0

1 < 3.8317 using R0
1 = 3.5.

Figure 23 shows correspondences between drops hanging from holes of R0
1 = 3.5

and bubbles resting on edges of holes with R0
2 = 2, 1.5 and 1. For comparison,

the reference pressure curve for R0
1 = 3 and the critical states B1,B2 and C1, C2 for

systems with R0
1 = 3 and R0

2 = 1.5 and 1 previously shown in figure 18 are included in
figure 23. Again, as in the case of R0

1 = 3, we proceed from the stable configuration
with horizontal free surfaces (the point O) and move in the direction of decreasing
reference pressure. The states critical to NI-perturbations for R0

1 = 3.5 and R0
2 = 2, 1.5

and 1, correspond to the points D1 and D2, F1 and F2, and G1 and G2, respectively.
However, NI-perturbations do not determine the stability limit in the cases of R0

2 = 1.5
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Figure 23. Reference pressure, Q − H , as a function of H for pendant drops with R0
1 = 3.5

and 3, and for sessile bubbles with R0
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to IC-stable (IC-unstable) solitary drops or bubbles. Horizontal lines show equal reference
pressure correspondences between pendant drops with R0

1 = 3.5 and sessile bubbles. Thin solid
lines and dot-dashed lines indicate stable systems and critical systems, respectively.

and 1. Indeed, drops hanging from hole of R0
1 = 3.5 and corresponding to the points

F1 and G1are already unstable to non-axisymmetric perturbations. The solitary drop
1 critical to non-axisymmetric perturbations corresponds to the point E1. Thus, the
stability limits for the cases R0

2 = 1.5 and 1 are determined by the systems of two
drops corresponding to the points E1 and E2, and E1 and E′

2, respectively.
When determined by NI-perturbations, the stability limit is a regular turning point

in the total volume (see the bifurcation diagram for R0
2 = 2 in figure 24). However, the

nature of the bifurcation undergoes a change when loss of stability occurs to non-
axisymmetric perturbations (R0

2 = 1.5 and 1). Then the critical system is no longer
a turning point. A subcritical bifurcation (like that for a family of solitary drops
with the most dangerous non-axisymmetric perturbations) is expected if a bifurcating
family of unstable non-axisymmetric drops 1 is constructed.

For R0
1 = 3.5, figures 25 and 26 show the basic characteristics of critical systems as

functions of the smaller hole radius, R0
2 . Here the maximum possible value of R0

2 for
a critical state is 2.1743 (the case of horizontal free surfaces). These characteristics
are similar for other values of R0

1 , 3.219 <R0
1 < 3.8317. Thus, for a given value of R0

1 ,
there is a particular value of R0

2 that is a ‘crossover’ point where the most dangerous
perturbations change from non-isochoric (NI) to non-axisymmetric perturbations. For
R0

1 = 3.5, the critical system corresponding to this crossover point has R0
2 = 1.5835

(see figure 25). The values of basic parameters for the crossover critical systems
corresponding to a set of R0

1 are shown in table 4.
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systems.
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R0
2 = 2, 1.5 and 1 are the same as in figure 23.
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1 = 3.5 as functions of the smaller hole radius R0

2 . Dashed lines correspond
to states critical to non-isochoric perturbations when they cease to be the most dangerous.
The point designations are the same as in figure 23.

R0
1 H ∗

1 V ∗
1 Q∗

1 R0
2 H ∗

2 V ∗
2 Q∗

2 V ∗
1 + V ∗

2 (Q − H )∗

3.25 2.102 18.949 1.531 1.3118 −0.409 −1.090 −0.980 17.859 −0.571
3.30 2.016 18.853 1.465 1.4426 −0.588 −1.902 −1.139 16.951 −0.551
3.35 1.925 18.659 1.396 1.4901 −0.665 −2.294 −1.194 16.365 −0.529
3.40 1.828 18.354 1.323 1.5229 −0.705 −2.538 −1.210 15.816 −0.505
3.45 1.725 17.919 1.245 1.5527 −0.728 −2.718 −1.207 15.201 −0.479
3.50 1.613 17.331 1.162 1.5835 −0.740 −2.866 −1.191 14.466 −0.450
3.55 1.491 16.560 1.072 1.6174 −0.746 −2.997 −1.164 13.563 −0.418
3.60 1.356 15.563 0.974 1.6560 −0.745 −3.118 −1.127 12.445 −0.382
3.65 1.205 14.271 0.864 1.7021 −0.736 −3.230 −1.077 11.041 −0.341
3.70 1.029 12.577 0.736 1.7595 −0.716 −3.325 −1.009 9.252 −0.292
3.75 0.813 10.245 0.581 1.8372 −0.675 −3.371 −0.907 6.874 −0.232
3.80 0.508 6.597 0.362 1.9633 −0.569 −3.174 −0.714 3.423 −0.145

Table 4. Characteristic parameter values for critical systems corresponding to the crossover
between non-axisymmetric and NI-critical perturbations.

6. Summary
A systematic analysis has been performed to provide a detailed discussion of the

stability of two connected axisymmetric drops hanging from circular holes. Previously,
only particular cases of weightless drops in contact with equal radii holes, identical
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drops under non-zero gravity, and two zero-volume suspended drops with horizontal
free surfaces pinned to the edges of unequal radii holes had been examined.

The collective stability of two connected drops differs significantly from that of
equivalent solitary drops. This is because the classes of admissible perturbations in
these cases are different. For a solitary drop, only isochoric (zero-volume change)
perturbations are admissible, while for two drops the perturbations of each drop may
be non-isochoric, but total liquid volume must be conserved.

This is the reason why, in general, the stability of the system of two identical
drops suspended from holes of equal radii cannot be reduced to the stability of a
single drop suspended from a hole of the same radius. Slobozhanin & Alexander
(2003) have shown, surprisingly, that the critical volume of a single pendant drop
is greater than the total critical volume of two identical drops suspended from holes
of the same radius. Does this mean that the liquid volume that can be retained by
surface tension in the case of a single hole is always greater than the total liquid
volume that can be retained in the case of two holes with the same radius? The work
presented here shows that the loss of stability of two identical drops does not lead
to their rupture (although the critical perturbations are axisymmetric), but results
in a continuous transition to a family of stable non-identical axisymmetric drops as
the total protruded liquid volume exceeds the value critical for identical drops. The
limiting quantity of the liquid that can be retained with two holes of equal radii is in
fact determined by a critical system of two non-identical drops. This system is critical
to axisymmetric non-isochoric perturbations, and here the total volume reaches its
maximum value. Further volume increase causes the detachment of a part of liquid
(the liquid dripping). Comparison of data in table 2 with volumes of critical solitary
drops shows that the total protruded liquid volume that can be retained with two
equal radii holes is greater than the maximum volume suspended from a single hole
of the same radius if R0 � 1.15. However, for 1.16 � R0 � 2.4048, this total volume is
smaller.

An analogous continuous transition from a family of stable identical bridges to a
family of stable non-identical bridges as the total liquid volume increases was detected
earlier by Lowry (2000) for coupled bridges of equal length with fixed contact lines
of equal radii and zero gravity. Apparently, this type of bifurcation in a point of
maximum pressure is typical of systems with coupled free surfaces that may be
identical. In particular, this should hold also for axial gravity (the stability limit
for identical bridges can be readily drawn from the stability diagram for constant-
pressure perturbations for a solitary liquid bridge obtained by Lowry & Steen, 1995).
Note, however, that for non-identical drops under non-zero gravity, the stability limit
is always a turning point corresponding to the maximum value of the total liquid
volume. In contrast, for non-identical zero-gravity liquid bridges, the stability limit
may be either a turning point (long bridges) or a pitchfork bifurcation corresponding
to the loss of stability to non-axisymmetric perturbations for one of two bridges (short
bridges). The latter should result in a transition to a stable family of non-axisymmetric
bridges (Slobozhanin, Alexander & Resnik 1997) rather than breakage.

The more complicated case of unequal radii holes has also been examined. For
zero gravity, there are two disconnected branches of stable states (see figure 5). The
first branch exists for any value of the total protruded liquid volume. The second
branch has a minimum value of this volume that corresponds to a system critical
to non-isochoric perturbations. For non-zero gravity, three basic intervals of the
larger dimensionless hole radius, R0

1 , have been established. The first is the interval
0 <R0

1 < 2.4048 (R0
1 = 0 corresponds to weightless conditions). The presence of gravity,
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results in the existence of a maximum value of the total protruded liquid volume. The
previously mentioned first branch for zero-gravity conditions transforms, for given
dimensionless hole radii R0

1 and R0
2 , to a branch bounded by a state with a maximum

total protruded volume. This state corresponds to a system critical to non-isochoric
axisymmetric perturbations (see figure 15). The second branch of stable states may
exist only for R0

2 values that are close to R0
1 . This branch is bounded by two states that

correspond to the local minimum and maximum total protruded liquid volume. These
states are also critical to non-isochoric perturbations. A feature of the stable system
with R0

1 > 2.4048 is that it contains one pendant drop and one sessile bubble rather
than two pendant drops, and there is only one branch of stable states for given R0

1

and R0
2 . The critical system for the R0

1 value from the interval 2.4048 < R0
1 < 3.219 (the

second basic interval) corresponds to the maximum total protruded liquid volume and,
independently of the R0

2 value, is associated with non-isochoric critical perturbations.
However, in the third interval, 3.219 <R0

1 < 3.8317, such stability behaviour holds
only for R0

2 values between a crossover value R0
2x and critical value, R0

2 cr, for the
system with horizontal free surfaces. If R0

2 is smaller than R0
2 x , the critical system

corresponds to the drop (hanging from the larger radius, R0
1 , hole) that is critical to

non-axisymmetric perturbations.
In the general case, non-isochoric (axisymmetric) perturbations are more dangerous

than isochoric axisymmetric ones, and for a system of two connected drops we have
to analyse only the collective stability to non-isochoric perturbations and the stability
of a solitary drop (with the larger hole radius R0

1) to non-axisymmetric perturbations.
It should be pointed out that other known coupled systems with fixed contact lines

deal with zero gravity conditions and equal radii of the contact lines. These systems
represent two cylindrical liquid bridges (Gillette & Dyson 1974) or the more general
case of two arbitrary bridge surfaces with equal mean curvatures (Lowry 2000). In
contrast to Lowry (2000), who studied the effect of disk aspect ratios on the behaviour
of the coupled bridges stability, we have examined the effects of gravity and hole
radii inequality on the stability of coupled drops. The study of these effects has been
performed for the first time for systems with disconnected free surfaces and fixed
contact lines.

A surprising feature of the stability of two connected drops strongly suggests that
the stability problem for a set of m > 2 connected drops is far from the ultimate
solution. The only result known about the stability of three connected drops relates
to the zero-gravity system with spherical free surfaces pinned to edges of equal radii
holes, r0

1 = r0
2 = r0

3 (Duzaar & Steffen 1992; Wente 1999). In contrast to the case of
two equal radii holes considered in § 3.2, loss of stability of three identical caps results
not in a continuous transition to stable non-identical spherical caps, but in a finite
jump to a stable equilibrium system consisting of two spherical caps that are less than
a hemisphere and one cap greater than a hemisphere.

Hopefully, the fundamental relation between the stability of a set of connected drops
to the total liquid volume conserving perturbations and the stability of individual
drops involved to perturbations that satisfy the fixed liquid pressure constraint (see
§ 1.2) can provide some insight into the stability of m > 2 connected drops as in the
case with two drops examined in this study.
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